
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 5, MAY 2010 2455
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Abstract—This paper considers the entropy of highly correlated
quantized samples. Two results are shown. The first concerns sam-
pling and identically scalar quantizing a stationary continuous-
time random process over a finite interval. It is shown that if the
process crosses a quantization threshold with positive probability,
then the joint entropy of the quantized samples tends to infinity
as the sampling rate goes to infinity. The second result provides an
upper bound to the rate at which the joint entropy tends to infinity,
in the case of an infinite-level uniform threshold scalar quantizer
and a stationary Gaussian random process. Specifically, an asymp-
totic formula for the conditional entropy of one quantized sample
conditioned on the previous quantized sample is derived. At high
sampling rates, these results indicate a sharp contrast between the
large encoding rate (in bits/sec) required by a lossy source code
consisting of a fixed scalar quantizer and an ideal, sampling-rate-
adapted lossless code, and the bounded encoding rate required by
an ideal lossy source code operating at the same distortion.

Index Terms—Entropy, entropy-rate, Gaussian random process,
oversampling, quantization threshold crossing, quantized random
process, rate-distortion, sampling.

I. INTRODUCTION

C ONSIDER the sequence of integer cell indices
produced by a scalar quantizer operating on samples

taken uniformly in the unit time
interval from a continuous-time stationary random process

. We are interested in the number of bits per second it takes
to losslessly encode ,
as increases. With ideal lossless coding, this rate is the joint
entropy of the quantized samples, which one
may view as the product of the sampling rate times the en-
tropy per sample

As the sampling rate increases, the entropy per sample de-
creases to zero as the samples become increasingly correlated.
The question is: Does it decrease fast enough that the joint
entropy remains bounded? In this paper, we answer this ques-
tion in the negative. Specifically, we show that under the mild
condition that crosses at least one quantizer threshold
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with positive probability, as .
Therefore, the rate, in bits per second, required to encode the
output of the quantizer increases without bound. The main idea
of the proof is to show that as , it is possible to obtain
from the quantized samples an increasingly accurate approxi-
mation of the first time that the process crosses some specified
quantization threshold in some finite interval. Since it is shown
that such a first crossing occurs with positive probability and
that when it occurs it is a random variable with a continuous
component, it follows that it has infinite entropy. As a result,
the entropy of the quantized samples can be shown to approach
infinity as . Some technical issues require handling.
For example, it needs to be shown that a first crossing does
indeed exist with positive probability. Also, a suitable definition
is needed for an approximate first crossing time that can be
determined from the quantized samples and that converges in
an appropriate sense to the actual first crossing time.

As a concrete indication of the rate of entropy growth, we
also show that when a uniform threshold scalar quantizer with
infinitely many levels is applied to a stationary Gaussian random
process with autocorrelation function , the conditional en-
tropy of one quantized sample given the previous is, asymptot-
ically

(1)
where is a constant depending only on the position of the
mean in its quantization cell and the ratio of the quantizer step-
size to the standard deviation of , denotes a quantity that
goes to zero as increases, and all logarithms in this paper have
base 2. From this, it follows that

(2)

For example, if the autocorrelation function of the random
process is twice differentiable at the origin (as when the spec-
trum is Gaussian or bandlimited), then (1) simplifies to

(3)

and consequently (2) becomes

(4)

where . If, however, the autocorrelation func-
tion approaches the origin with slope having nonzero absolute
value (e.g., with ), then
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and in this case, (2) becomes

(5)

We now describe what can be deduced about higher-order
conditional entropies. For a Gaussian random process with au-
tocorrelation function that is twice differentiable at the origin,
(3) and the fact that as imply
that for

where is a quantity going to infinity as goes to infinity.
That is, for , at a rate greater
than , but no greater than .

On the one hand, the result that joint entropy increases
to infinity is surprising in that it contrasts sharply with the
finite rate attainable by ideal lossy source coding. To see this,
consider the fact that linear reconstruction of a continuous-time
approximation of from the quantized samples creates a
reproduction with mean-squared error (MSE) distortion,
denoted , bounded below by the ordinarily strictly positive
distortion, denoted , of a Wiener filter applied to the output
of the quantizer operating directly on (with no sampling).
Therefore, a system consisting of a sampler with sampling
rate , scalar quantizer, ideal (sampling-rate-adapted) lossless
encoder, corresponding decoder, and linear reconstruction has
MSE and rate going to infinity as .
In contrast, ideal lossy coding of the samples with MSE
requires rate bits/second, where denotes
the Shannon rate-distortion function (in bits/sample) of the
stationary sampled process . Since as ,

converges to , the Shannon rate-distortion
function of the continuous-time process , and since linear
reconstruction of from the decoded samples can be done
with MSE approaching , ideal lossy coding can attain MSE
no larger than that of the scalar quantizer based system, with
rate remaining bounded rather than tending to infinity as
increases. The infinite gap between ideal lossy source coding
and scalar quantization based coding contrasts with the well
known fact that when coding discrete-time processes, scalar
quantization with entropy coding (i.e., lossless coding at the en-
tropy-rate of the quantizer output) suffers only a small penalty
relative to ideal lossy source coding that is bounded above by
0.255 bits/sample at high rates and that does not substantially
exceed this at any rate [1]–[3]. Evidently, at high sampling
rates, this penalty, multiplied by the sampling rate, approaches
infinity.

On the other hand, the increase of entropy with is
consistent with the previous results of which we are aware.
For example, Shamai [4] showed that when a binary quan-
tizer with threshold at zero is applied to a random process
bandlimited to Hz, times the entropy-rate1

of the sampled and quantized process can be as large as,

1� ��� � ��� ��� � � � � � � �

but no larger than, bits/second. Since
, this shows that the latter might

grow as for a bandlimited process,2 which is the same
rate of growth shown in (4) when the quantizer is uniform
threshold and the process is Gaussian with an autocorrelation
function that is twice differentiable at the origin. Cvetkovic
and Vetterli [5], [6] describe a simple scheme for losslessly
encoding the output of a sampler and scalar quantizer applied
to a bounded and bandlimited deterministic signal. The coding
rate of their scheme increases as . While this is not a
result about the entropy of the quantized samples of a random
process, it nonetheless shows a comparable behavior. For the
same type of signals, Cvetkovic and Daubechies [7] and Ishwar
et al. [8] describe schemes for encoding the output of a sampler
and dithered scalar quantizer, with rate again increasing as

(see also [9] for an earlier discussion of the dithering
method, without the low rate encoding of [7] and [8]). Finally,
for bounded, nonbandlimited deterministic signals, Kumar et
al. [10] describe a scheme for coding the output of a sampler
and dithered scalar quantizer with rate depending on the tail
of the spectrum. For example, the rate grows as for a
signal with an exponentially decaying spectrum. This and (5)
suggest that for nonbandlimited processes, entropy can increase
more rapidly than .

The significance of our result that entropy increases to infinity
depends on the fact stated earlier that ordinarily the MSE, ,
cannot decrease to zero as sampling rate increases. For if to
the contrary some special reconstruction method could make

go to zero, then rate increasing to infinity would not be
so significant, because it might increase at the pace dictated by
the rate-distortion function . Alternatively, the increase
of rate would not be so significant if some special reconstruc-
tion method made it possible to increase the coarseness of the
quantizer with in such a way that both rate and MSE remain
bounded. Accordingly, we now summarize the results of which
we are aware on the limiting MSE of linear and nonlinear re-
constructions made from quantized samples.

As mentioned earlier, the limiting MSE of linear reconstruc-
tion is bounded below by , the MSE of a Wiener filter ap-
plied to the output of the quantizer operating directly on ,
without sampling. While we are not aware of any general result
that characterizes those processes for which , it seems
evident that this holds except in highly specialized situations,
for example, when is a random telegraph process (which
switches at random times between and ), and is a quan-
tizer with a threshold at the origin.

Similarly, for nonlinear reconstructions, MSE can sometimes
be made to go to zero and sometimes not, and it is not under-
stood how to characterize the boundary between the two cases.
However, there are a handful of examples for which it is known
whether MSE tending to zero is possible or not, which we now
list. First, if the sample functions of a stationary random process

2Actually, Shamai was interested in the information-rate (in bits per second)
between a bandlimited continuous-time process ���� and the output of a sam-
pler and binary quantizer, which reduces to�� ���. In this context, our result
shows that the information rate in bits/second provided by a sampler and binary
quantizer tends to infinity; the only condition being that���� crosses the quan-
tizer threshold with positive probability.
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are sinusoidal with random phase and known mean, amplitude,
and frequency, and if the quantizer has a threshold that is crossed
by the sample functions of this process, then it is easy to see that
MSE can be made to go to zero with a nonlinear reconstruction
that at time uses the past quantized samples to estimate the
times of the two most recent threshold crossings, from which an
estimate of the unknown phase is produced. More generally, for
bandlimited signals and processes, it is known that MSE can be
made to go to zero as increases provided there are sufficiently
many threshold crossings [11]–[13]. However, bandlimitedness
is insufficient in and of itself, because Bar-David has de-
scribed a stationary, bandlimited, zero-mean Gaussian random
process for which MSE cannot go to zero when the quantizer
is binary with threshold at zero, even with nonlinear reconstruc-
tion. The following are two instances of nonbandlimited random
processes for which it is known that MSE cannot go to zero
with nonlinear reconstruction. Slepian [15] has shown that MSE
cannot go to zero for a Gauss-Markov (i.e., Ornstein–Uhlen-
beck) process and a binary quantizer with threshold at the mean,
and Marco [16] has shown that MSE cannot go to zero for any
quantizer and any stationary Markov process that is continuous
almost surely and has absolutely continuous second-order dis-
tribution.

In conclusion, based on the results of which we are aware, it
is our belief that MSE can be made to go to zero only in highly
structured cases, such as the random telegraph and sinusoidal
examples. Consequently, in most cases, it is significant that en-
tropy increases to infinity as sampling rate grows.

The study of the entropy of scalar quantization plus entropy
coding at high sampling rates is relevant to the problem of field
gathering with wireless sensor networks [17]–[20], where scalar
quantization plus Slepian–Wolf lossless coding is an interesting
approach [18] to distributed lossy coding of the samples taken
by an array of sensors measuring a field such as the temperature
in some geographic region. With Slepian–Wolf coding [21] the
quantized samples are encoded using a number of bits equal to
their joint entropy. In this context, the fact that entropy tends to
infinity indicates that for efficient operation of such a system, the
sensors should not be spaced too closely [18]. Evidently, with
scalar quantization, the increasing correlation between neigh-
boring sensors is not sufficient to mitigate the increasing number
of sensors. In making this assertion, we assume that, as elemen-
tary arguments suggest, the joint entropy of quantized sam-
ples taken from a stationary 2-D field will also tend to infinity.

An outline of the paper follows. Section II states and proves
the result that entropy tends to infinity as , using the
fact that threshold crossing times are asymptotically well de-
termined from the sampled and quantized process. To make
this argument precise, such crossing times must be carefully
defined. Some needed technical characteristics of random pro-
cesses (separability, measurability and continuity) are briefly
reviewed in Appendix A. Section III states the result on the
asymptotic formula for the conditional entropy . This
is proved in Section IV, with the proofs of certain lemmas left to
Section V, and some details left to Appendices B, C and D. This
is a delicate argument that uses the light tails of the Gaussian
distribution to show that when samples are closely spaced, the
conditional entropy of one quantized sample given the previous

Fig. 1. Sample path of the random process � on the interval ��� ��, which is
sampled and quantized. � is the quantization threshold considered,� is the first
crossing time of �, and ��� is the sampling interval.

is dominated by just two terms of the defining sum. In addition,
this section also provides an asymptotic formula for
when the uniform threshold scalar quantizer cells shrink as
increases. Concluding remarks are offered in Section VI.

II. JOINT ENTROPY OF QUANTIZED SAMPLES

AT HIGH SAMPLING RATES

Consider a continuous-time, stationary random process that
is sampled every seconds. Each sample is quantized
using an arbitrary, yet unchanging, scalar quantizer. In this sec-
tion, we show that under very mild conditions the joint entropy
of the quantized samples in any fixed finite time interval tends
to infinity as goes to infinity. Specifically, we assume that
the process is continuous in probability and that it crosses some
quantizer threshold with positive probability. The process need
not be bandlimited.

As mentioned in the introduction, the key idea3 is to approx-
imate, using the quantized samples (ever more accurately, as

), the first time the process crosses the specified quan-
tization threshold in the given time interval. Since this first time
is a random variable with a continuous component, it has infi-
nite entropy, thus implying the entropy of the quantized sam-
ples tends to infinity as . Fig. 1 illustrates a sample
path, its samples, a threshold, and the time of first threshold
crossing. While the basic idea is fairly simple, it does involve
certain technical hurdles that need to be overcome. Specifically,
the following are needed.

1. Some random process regularity conditions, such as sepa-
rability, that insure the validity of elementary steps of the
derivation.

2. A useful definition of a quantizer-threshold first-crossing
time that can be approximated from quantized samples.

3. A proof that for any specified finite time interval, the event,
denoted , that a first threshold crossing occurs in that
interval has positive probability.

4. The identification of an event with positive prob-
ability, with the property that when occurs, the first
crossing time is a well behaved continuous random vari-
able, and which facilitates the next item.

5. The definition of an approximate first crossing time that
can be determined from the quantized samples, and a proof
that when occurs, it converges in probability to the first
crossing time.

3The authors thank Bruce Hajek for this idea.
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6. A proof that 3–5 above imply that the entropy of the ap-
proximate first crossing time, and consequently, the en-
tropy of the quantized samples, converge to infinity.

We now state the random process assumptions and regu-
larity conditions we require, definitions of threshold crossing
times, and the main result of this section along with its proof.
Appendix A provides definitions and a brief review of the
regularity conditions.

The continuous-time random process is represented as the
collection of random variables
defined on the complete probability space . Let de-
note the random variable at time , let denote the sample
path corresponding to , and let be a shorthand for the entire
random process.

We assume throughout that is stationary and continuous
in probability, which are conditions determined by the finite-di-
mensional distributions of . We also assume that the specific
functional representation of is separable and measur-
able, which continuity in probability permits one to assume.
These conditions insure that a set of the form

is an event in with a probability depending
only on and , and that expected values and time inte-
grals can be exchanged in appropriate circumstances.

A quantizer is characterized by a finite or countably infinite,
strictly increasing sequence of thresholds , a corresponding
partition of into intervals, called cells, such that the left
and right boundaries of the cell are and , respectively,
and a quantization rule defined by , when

. The quantizer will be denoted .

Definition 1: (inspired by [22, p. 146ff]): Let be a quantizer,
and let be some function. Then has a -threshold-
crossing if there exists , , and quantization cells
such that , , and , .
When is specified, it is said to be a -threshold-crossing.
When is specified, the threshold crossing is said to be at .

It can happen that a function has a number of -threshold
crossings in a finite interval such as , but no first crossing.
For example, suppose has just one threshold at 0, and

.
The main result of this section is the following.

Theorem 1: Let be a continuous-time, stationary and con-
tinuous in probability random process. Let be a quantizer
such that has a -threshold-crossing with positive probability.
Given a positive integer , let ,

, denote the quantized samples in the time in-
terval . Then

Though for simplicity, the theorem is stated for the time in-
terval , it holds equally for any interval. As suggested ear-
lier, the proof proceeds by showing that from the quantized
samples, one can approximately compute the time of the first
quantizer threshold crossing in the time interval , and then
showing that the approximation, and consequently the quan-

tized samples from which they are computed, have entropy in-
creasing to infinity. To show that the approximation has entropy
approaching infinity, we will use the following.

Lemma 2: Let and , , be real-valued random
variables defined on such that each is discrete,
and there is an event such that (a) , (b) for
every , as , and (c) for
every , there exists such that
for all . Then as .

Proof: To show that entropy goes to infinity, we will show
that when is large, all outcomes of have uniformly small
conditional probabilities. Specifically, we now show that for any

, for all sufficiently large and all .
Accordingly, given , choose such that

for all , and choose such that
for all . Then for and any

We now bound the entropy of

where the second inequality holds whenever is sufficiently
large. Taking the limit as and then letting shows
that , and completes the proof.

Proof of Theorem 1: We will apply Lemma 2. The
fact that there is a -threshold-crossing with positive proba-
bility permits us to fix such that the probability of a

-threshold-crossing is positive. (If the probability of a
-threshold-crossing were zero for all , then the

probability of a -threshold-crossing would be zero.) Moreover,
since the process is defined on the whole real line, for any finite
interval , the probability of a -threshold-crossing
occurring in that interval is positive (if not, then by stationarity
the probability of a -threshold-crossing in each interval of
the form , with an integer,
would be zero, and the union bound would show that the prob-
ability of a -threshold-crossing anywhere in is
zero).
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We are now ready to define and to be, respectively, the
first threshold-crossing time and its approximation mentioned
earlier. Specifically

has a first -threshold-crossing in
it is at , and it is a crossing.
otherwise

and

where is the smallest integer
such that , or if no such exists.

Let in Lemma 2 be the event that a -threshold-
crossing occurs in the time interval . The above
argument establishes , which is condition (a) of the
lemma. To check condition (b), we observe that when occurs,
there can be no earlier threshold-crossings in ; so this is
the first threshold-crossing in . Hence, equals the time
of this threshold-crossing. Moreover, when , this
threshold-crossing will necessarily be reflected in the quantized
samples. That is, the sample just to the left of the threshold
crossing ( insures there is such a sample) and the
sample just to the right will be the first pair of consecutive
samples to lie in different quantization cells.4 It follows that
when occurs and , . Hence, for
any , when , ,
so condition (b) holds.

Finally, to verify condition (c), we observe that for any and
any

The numerator of the right-hand expression is bounded from
above by (any -threshold-crossing (not necessarily
a first crossing) occurs in . By stationarity,
this is the same for all values of . As , it converges
to -threshold-crossing occurs at ), which in
turn is zero because it equals the expected fraction of time at
which a -threshold-crossing occurs, which is zero, be-
cause -threshold-crossings can occur at most a countable
number of times in any sample path (One can formalize this
argument [23] using the indicator function of the event that a

-threshold-crossing occurs at time . Such an argument
uses the measurability of the process to permit an expec-
tation and time integral to be interchanged). In conclusion,
we have that for every , there exists such that

for all , and, consequently,
for all , which establishes condition

(c).
Lemma 2 now implies that . Since is en-

tirely determined by

4If there is a sample directly at the threshold-crossing time, then it will be this
sample plus the one either to the right or left that forms the first consecutive pair
to lie in different cells.

which completes the proof of Theorem 1.

We note that the process in Theorem 1 is required to be con-
tinuous in probability so as to guarantee (along with stationarity)
the preservation of probability under shifting and to permit ex-
change of integration and expectation.

III. ASYMPTOTIC FORMULA FOR CONDITIONAL ENTROPY FOR

A GAUSSIAN SOURCE

Let and denote jointly Gaussian random variables
with mean , variance , and correlation coefficient .
Let denote the quantization rule of an infinite-level uniform
threshold scalar quantizer with step size , offset ,5

and cells , , where , is the
left threshold of the th cell. Let and ,
where if . Let .

The following is the main result of this section.

Theorem 3: Suppose , . Let .
Then

where

is a positive constant that depends on the ratio and on the
position of the mean in its cell.

This theorem shows that when is close to one,
factors into a term depending on and another depending on
and . We show in Appendix B that uniformly in
as . Numerical calculations show that when (i.e.,

), the approximation is accurate to within
fraction of the true value for all . Numerical
calculations also indicate that as , the convergence of
conditional entropy to the asymptotic expression is fairly slow.

Next, consider a generalization of the asymptotic formula for
conditional entropy in Theorem 3 for the situation that the quan-
tizer cells shrink as the correlation between the input random
variables increases. This is relevant to situations where it is de-
sired to attain smaller MSE as correlation increases. For ex-
ample, the scheme described in the introduction for field gath-
ering with a wireless sensor network (involving fixed scalar
quantizers and linear reconstruction) has rate in (bits per unit
area) increasing to infinity and distortion bounded away from
zero, as sensor density increases. However, it might be desired
to have distortion go to zero as sensor density increases, which
can be attained using quantizers whose cells shrink to zero as
sensor density increases. Clearly, such a scheme has larger rate
than its nonshrinking cells counterpart.

Theorem 4: Let and be quantized with an infinite-level
uniform threshold quantizer with step size to standard deviation
ratio that is any positively valued function that tends to

5� need only assume values in ��� �� rather than ��� ��. However, allowing
� � � facilitates symmetry arguments.
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zero as and satisfies (a) , and (b)

. Then

An example of a possible is . Notice that

the factor that multiplies in the denominator
above is similar to the limiting value of divided by .
This gives rise to the observation that the quantizer cells can be
shrunk in two different ways—either, (a) by fixing , letting
go to 1, then letting go to 0, as in the discussion after Theorem
3, or (b) by letting be a function of that decreases to zero as

goes to 1, as in Theorem 4.

IV. PROOFS OF THEOREM 3 AND THEOREM 4

Notation: We begin by introducing some notation to be
used throughout. Let , , and

. For brevity, when it is clear from context,
we drop the superscript from all functions that depend on it,
such as , , , etc. Note that depends on , but we do
not show this explicitly.

Let denote the entropy function, i.e.,
where the ’s

are a finite or countably infinite set of nonnegative numbers that
need not sum to one, and where is taken to be 0. All
logarithms are base 2. Let also , and for a set
let . Thus, for example, with this notation

When the set has few elements (two or three), we
abuse notation and omit the curly brackets. For instance,
we write instead of . Let
also , where

. Note that need not be a probability
density function (pdf), but it will be nonnegative.

Let denote a Gaussian pdf with mean and vari-
ance . Let

be the conditional variance of given . Let

denote the standard “Q function”. Elementary
facts about the and functions that will be useful throughout
are provided in Appendix C. We refer to them as Facts C1–C9.
Let

and refer to it as the “correction factor” to the upper bound
of the function (see Fact C1 in Appendix C). A useful

elementary fact about is also provided in Appendix C.

Proof of Theorem 3: Without loss of generality let the
means of and be zero, so that . The key to
finding a simple asymptotic expression for conditional entropy

is to truncate the summations, eliminating terms that are asymp-
totically negligible when approaches one. As one step, we will
specify an integer , and show that truncating the outer sum-
mation to has, asymptotically, no ef-
fect.

Now consider truncating the inner summation,
, . We begin by noting the

similarity to the problem considered in [25], where it was shown
that when quantizing a Gaussian random variable with an in-
finite uniform scalar quantizer with quantizer step size that
grows large relative to the variance of the Gaussian variable, the
entropy is dominated by just the
two terms and , corresponding to the cells
flanking the cell containing the mean. The present problem is
analogous in that the variance of the quantized variable, i.e., of

given , goes to zero as ; so, it becomes small rela-
tive to the quantizer step size. Nonetheless, there is a significant
difference. Here, we are concerned with the conditional entropy
of given , the quantized version of

, rather than itself. Because of this, the conditional dis-
tribution of is not Gaussian, so the analysis of [25] does not
apply.

To see how to proceed, consider an expression for the condi-
tional pdf of given

(6)

One can see that is a weighted average of condi-
tional densities of given that equals particular values
in , where the weighting function is Gaussian. These con-
ditional densities are Gaussian with mean times the value of

, and variance . Therefore, when is close
to one, these conditional densities are very narrow, with mean

times the given value of . Thus, when is close to one,
concentrates on the interval , as illus-

trated in Fig. 2. Now, continuing to assume is close to one, con-
sider the effect of , also illustrated in Fig. 2. On the one hand,
when is not too large (specifically, when so
that ), concentrates on the th cell,
i.e., the cell containing . On the other hand, when is much
larger, the interval on which concen-
trates is disjoint from the th cell. (We also note, though we
do not exploit this, that when is large, becomes
very narrow, due to the fact the Gaussian weighting function
concentrates at the endpoint closest to the origin of the th cell.)
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Fig. 2. Conditional pdf of � given that � lies in the �th quantization cell. The parameters are � � , � � �, � � �, � � �, � � ����, and (a) � � �,
(b) � � ��.

The fact that does not approximately concentrate on
one quantization cell when is large significantly complicates
the approximation of for such . Fortunately,
in addition to choosing large enough that the outer sum
can be truncated to the terms , we are
also able to choose small enough that when ,

is sufficiently small that concentrates so
much on the th cell that is dominated by just
the two terms and . More precisely, let-
ting means that the convergence happens as ,
the competing requirements on are as follows.

1: , required by Lemmas 7–11, 14, 15.

2: , required by Lemma 13

3: , required by Lemma 15

4: , required by Lemma 16

If we consider to be of the form , then in

order for Item 2 to hold for any , it must be that .
Similarly, for Item 3 to hold, it is necessary that . For

, Items 1 and 4 are easily seen to be satisfied. There-
fore, we choose

We conclude this proof introduction by mentioning that an-
other key step is the determination of tractable approximations
to .

Let denote the conditional entropy when the
quantizer has offset . Define

We observe that due to the symmetry of the Gaussian pdf and of
the uniform quantizers, and . There-

fore, it is not hard to see that
. Hence

(7)

The proof proceeds by finding an asymptotic expression for
, which only requires focusing on nonnegative ’s.

Specifically, letting

we show that each term on the right-hand side of the following
equation converges to one as :

(8)

where we define
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or otherwise written, , where

and .
Once (8) is established, the theorem follows using (7) and the
easily seen fact that .

Before proceeding further, we investigate and establish addi-
tional properties of , and other important quan-
tities that we will need. Lemmas will be stated as needed; their
proofs will be provided in Section V, or in Appendix D. We
begin by finding approximate expressions for the conditional
pdf

For tractability we would like to drop the smaller of the two
function terms in the above expression, which leads us to the
upper bound

(9)

The following lemma shows that is an asymptoti-
cally tight upper bound to .

Lemma 5:

as and

and, consequently, for any , there exists such
that for all , for all and .

We will find it useful to use the following alternate represen-
tation of

(10)
where

and

Equation (10) is obtained by manipulating exponentials. For ex-
ample, for the region

Similar algebraic steps can be used for the regions

and . The representation of in (10)
will be useful since it will turn out that and con-
verge to multiples of and , respectively. This mo-
tivates us to further examine these quantities. Specifically, the
following lemma provides upper and lower bounds to and

.

Lemma 6: For :

A. for

B. for

C. for

D. for

where .
Next, when considering the second, third and fourth

terms on the right-hand side of (8), and for
, will play a key role; hence, we shall find

expressions for these. (It will turn out that finding an expression
for can be avoided.) From Lemma 5, it will follow that it
will be enough to use rather than , i.e.,

will be shown to be a sufficiently good
approximation to as , and similarly it will follow
that is a sufficiently good approximation
to as . However, since we are considering

, one can see from (9) and (10) that the expression for
in the interval is rather complicated.

Therefore, for analytical tractability, we define

(11)

where we observe that for sufficiently large, ;
thus, is evaluated on a subset of cell . Hence, it is
easy to see that for all . We will show,
however, that is a sufficiently good approximation of
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, and consequently, we will be able to use instead
of .

We observe that since grows as , the number of
summands in the numerators and denominators of the second
and third terms in (8) grows as well. Consequently, when
making convergence statements regarding , and

, we will require a special kind of uniform convergence.
Thus, we define the following limit notation, which captures
the required uniformity.

Definition 2: Let mean that
, or equivalently, that

.
Lemma D1 of Appendix D shows that certain properties of

standard limits hold for , as well.
Next, we provide four additional lemmas. Lemma 7 links

and to and , respectively, which will
illuminate the importance of and and, hence, the
reason for decomposing according to (10). Lemma
8 shows that is a sufficiently good approximation of

; Lemma 9 shows that and converge to
zero in the sense; and Lemma 10 shows how rapidly
and decay in terms of .

Lemma 7:
A.

B.

and consequently from B

C. for all sufficiently close to one

for

D. for all sufficiently close to one , for

where the second inequality in C follows from Lemma 6 (part
C).

Lemma 8:

Lemma 9:
A. ;

B. .

Lemma 10: For all sufficiently close to one, the following
holds for :

A. , for ;

B. , for .

Now that we have established basic properties of ,
and , and the rate of decay of certain conditional

probabilities, we are ready to proceed with the main part of the

proof and show that each of the five terms in (8) converges to
one as . We consider the terms in the following order:
second, first, third, fourth, and fifth. The following lemma shows
the second term converges to one as .

Lemma 11:

The next lemma is needed in the proof that the first term in
(8) converges to one.

Lemma 12: For all and

where is defined in Lemma D2.
Finally, the four lemmas below show, respectively, that the

first, third, fourth, and fifth terms converge to one as , and
conclude the proof of the theorem.

Lemma 13:

Lemma 14:

Lemma 15:

Lemma 16:

Proof of Theorem 4: The proof is very similar to that of
Theorem 3; thus, we shall only point out the differences, rather
than repeat the derivations. The main difference lies in the fact
that the ratio is no longer constant, but rather tends to
zero (we attribute this to quantizer cells shrinking, but it can
equally be attributed to source variance increasing). Therefore,
letting as , as given in the theorem statement,
one can restate and reprove Lemmas 5–16, which were needed
in the proof of Theorem 3. When doing so, however, some care
is needed. Specifically, since the cells shrink as tends to one, it
would be necessary to use a different function . It is easy to
see that in order for the first fraction on the right-hand side of (8)
to converge to one, the new , denoted , would have
to tend to infinity faster than the old , which for emphasis
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is denoted . While it is not at all obvious that there exists
a choice of that is sufficient, namely, for which all the
new lemmas hold, it turns out that such a choice exists when

satisfies the conditions of the theorem. In the following,
we list the requirements for and in order that the
lemmas can be applied. As before, we let mean that
the convergence happens as .

1: required by Lemmas 5, 7–11, 13–15.

2: , required by Lemmas 7–15.

3: , required by Lemma 10.

4: , Where is given in Lemma

D2, required by Lemma 13.

5: , required by Lemma 15.

6: , required by Lemma 16.

We note that the proof of Lemma 16 needs to be modified
slightly to work for this theorem as well. Specifically, since

depends on , the last convergence to in the proof
of Lemma 16 would be shown by showing that the ratio of
the term converging to converges to one. Finally, by
choosing , we find that the following

conditions on are necessary and sufficient for all of the
above requirements to hold: (a) , and

(b) . This follows since implies

conditions 1 and 3 hold, the definition of along with
imply conditions 5 and 6 hold, and the definitions of
and imply conditions 2 and 4 hold. To see that condi-
tion 4 holds, we note that in light of condition 1 and the fact
(given by Lemma D2) that , it follows

that it suffices to have as , which

is easily seen to hold.

V. LEMMA PROOFS

Proof of Lemma 5: We notice from (9) that there are three
regions to consider: , and .

Observe that for any , , for

. Thus, the lemma holds trivially in this region. Next,
we will show that the lemma holds for . The result for

can be shown in a similar way

We now show that the fraction on the right-hand side above
approaches zero. Specifically

where follows from and the fact that
is monotonically decreasing (Fact C6); is due to the facts

that and ; and the convergence holds for
all .

Proof of Lemma 6: We show the statements of the lemma
in the following order: A, B, D, and C. Consider Part A

where follows from Fact C4 and having
.

Next, Parts B and D are shown as follows:

where and above follow from dropping the smaller
terms in the denominators and using Fact C1 to upper bound
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the larger terms (recalling that , so that Fact C1 can be
used).

Finally, to show Part C, consider first

where follows by lower bounding the Gaussian pdf with its
value at the upper limit of the integral. Notice that the above
also holds if and . If, however, and ,
then lower bounding the Gaussian pdf with its value at the lower
limit of the integral yields (directly) the same upper bound.

Proof of Lemma 7: Part B: From the definition (11) of
and from (9) and (10), we have that for all and

(12)

Similarly, from (11), Lemma 5 and (10), we have that for any
, there exists such that for all and all

(13)

Assuming , as needed in this lemma, we evaluate the
integrals above as follows:

(14)

where , , and de-
notes the indicator function of the set . Next, we wish to apply
Lemma D1 (Part A) to the right-hand side above. To justify this,
we first observe, using Fact C6, that for all , the in-
tegrand is dominated by an integrable function because

Second, we need to show that
exists for

almost all . Defining for and
for , we have for

(15)

where follows from the monotonicity of (Fact C6), and
follows from having and . We also
have for

(16)

where follows from the monotonicity of (Fact C6), and
is due to having , , ,
and . Equations (15) and (16) now imply that

for all . Consequently, we may apply Lemma D1
(Part A) to the right-hand side of (14) and obtain

(17)

Finally, combining the fact that in (13) can be chosen arbi-
trarily close to one, together with (12), (14), and (17), it follows

that , which concludes the proof of Part B.

Part A: The proof is similar to that of Part B, up to a point.
Assume first that . Then, , and using Lemma 5

and the definition of , we have that for all

(18)
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and that for any , there exists such that for all

(19)

The integrals above are evaluated by taking similar steps to (14)
and obtaining

(20)

where here and . We now

introduce the operator , which is the same as except
that is greater than or equal to one rather than zero. Namely,
if for some function , then it means that

.

Next, we would like to apply Lemma D1 (Part A) to the right-
hand side of (20). Clearly, the result of the lemma holds for
the operator, as well. To justify using this lemma, we first
observe that for all , the integrand is dominated by
an integrable function because

Second, we need to show that
exists for

almost all . For

(21)

where follows from the monotonicity of (Fact C6), and
follows from having and . We also have
for

(22)

where follows from the monotonicity of (Fact C6), and
is due to having , ,

, and for all . Equation (21) and (22) now imply
that

for all . Consequently, we may
apply Lemma D1 (Part A), which, as mentioned, holds for the

operator as well, to the right-hand side of (20) and obtain

(23)

where the last equality follows from (17).
Next, combining the fact that in (19) can be chosen arbi-

trarily close to one, together with (18), (20), and (23), it follows
that

(24)

It remains to consider the case. Recall that

. From Lemma 8, we have

(note that the proof of Lemma 8 uses Part B of the present
lemma, which has already been established, so there is no

circularity). By Part B, . Combining

this with the facts , , and

, we find . This together
with (24) completes the proof of Part A and of the lemma as a
whole.

Proof of Lemma 8: Let , which is sufficient for the
purpose of the lemma. We write the following:

where the inequality follows from the fact that

for , as seen by
(10). Combining this with the fact, shown in Lemma 7 (Part D),
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that for all sufficiently close to one, for
, it follows that it suffices to show

(25)

Simplifying the above expression, we obtain

as

where follows from substituting the Gaussian pdf with its
value at the lower limit of the integral, and is obtained by
recalling that , substituting for ,
and noting that . This shows (25) and concludes the
proof of the lemma.

Proof of Lemma 9: Part B: Lemmas 7 (Part B), 8, and
D1 (Part C) imply that . Lemma 6 (Part C)

shows that for all , so that
. It now follows from Lemma D1 (Part C)

that , which is Part B of the lemma.
Part A: To show , from Lemma 7 (Part A)

and Lemma D1 (Part C), it suffices to show .

Clearly, for any , as .
That , follows directly from the fact that for

such that , where is the constant given in
Lemma 6 (Part A)

as

Proof of Lemma 10: Part A: We need to show that for all
sufficiently close to one and for

for

This follows easily from the steps below that hold for all suf-
ficiently close to one and .

A1: , .
A2: .

Step A1: We observe that for all sufficiently
close to one and . Thus, since

for all , it follows from (10) and the mono-
tonicity of (Fact C6) that for all sufficiently close to one and

(26)

Next, using Lemma 5 with , (10), and the monotonicity
of (Fact C6), we obtain that for all sufficiently close to one
and

(27)

Using (26) and (27), it suffices to show that for all suffi-
ciently close to one and

or alternatively, since , it suffices to have

(28)

Next, we observe that the argument of the function in the
numerator can be written as

Using Fact C5, with and , where

we notice that implies that , it follows that for
all sufficiently close to one

(29)

To obtain a lower bound to , we apply Lemmas 7 (Part
D) and 6 (Part D) to obtain that for all sufficiently close to one
and

(30)

where the second inequality derives from substituting
for . If , then from Lemma 7 (Part D),
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, where we notice that

and do not depend on . Combining this and (30) with
(29), it is easy to see that (28) holds for all sufficiently close
to one and , which completes Step A1.

Step A2: Applying (26) with , we obtain that for all
sufficiently close to one and

Next, we observe (using Fact C1) that for all sufficiently close
to one and

where the last inequality was shown in Step A1. Substituting
this bound into the right-hand side of the previous equation, we
find that for all sufficiently close to one and

(31)

Using the same ideas that lead to (27) with , we find
that for all sufficiently close to one and

(32)

where the second inequality follows from having

and so that
the left function above goes to and the right function
above goes to 0 as goes to one, uniformly for .
Step A2 now follows from (31) and (32).

Part B: We need to show that for all sufficiently close to
one and for

for

The proof is similar to that of Part A, yet not identical. The dif-
ference lies in the fact that B has in its expression instead
of, say, . Part B follows easily from the steps below that
hold for all sufficiently close to one and .

B1: for .
B2: .

Step B1: We observe that for all and .

Thus, since for all , it follows

using derivations similar to those leading to (26) that for all
and

(33)

A derivation similar to that of (27) shows that for all suffi-
ciently close to one and

Using the above two equations together with similar steps to
those used to obtain (28), it follows that it suffices to show

(34)

Following the same derivation as that which was used to ob-
tain (29), we have

Combining this with (34) and with the lower bound to
given in (30) and with the derivation thereafter, completes the
proof of Step B1.

Step B2: Applying (33) with , we obtain that for all
and

(35)

From (32), we have that for all sufficiently close to one and
with any , and for and

(36)
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where follows since the first function in (32) tends to

as (since ) and is in particular
smaller than for sufficiently large , derives from the fact
that the term tends to zero in the sense, thus, in particular,
it is less than for all sufficiently close to one, and is due
to having , along with the monotonicity
of (Fact C6). When and , above does not
hold, however, in (35) can be further upper bounded as

, by using

the fact that , along with the monotonicity of
(Fact C6). It now follows from this and (35) and (36) that

it suffices to show that for all sufficiently close to one and

(37)

Using the definitions of and , we obtain that for
all sufficiently close to one and

(38)

where follows from having ,
is due to Fact C1, and is obtained by substituting for

.
Finally, for the case that , (37) can be

seen to hold for all sufficiently close to one, by com-
bining (38) and (30). For the case that , combining
(38) with Lemma 7 (Part B), from which it follows that

, implies (37) for all

sufficiently close to one. This concludes Step B2 and the proof
of the lemma.

Proof of Lemma 11: It follows from Lemma D1 (Part D)
that it suffices to show

Since
, from Lemma D1 (Part B), it suffices to show

(39)

We proceed by upper bounding the second sum in the
numerator above. In a similar way, the same expression
can be shown to be an upper bound for the first term.
First, let us write the second sum more explicitly as

. Next, recall
from Lemma 7 (Part C) that for all sufficiently close to
one, , for .
Thus, for all sufficiently close to one,
for . We will assume for the rest of the
proof that . Combining this with Fact C8
and with the fact that for and

, as shown in Lemma 10 (Part A), it follows that
for and

. Therefore

where the last equality follows from having

, since . As men-

tioned, can be upper bounded by
the same expression (using Lemma 10 (Part B)). Thus, it fol-
lows that for all sufficiently close to one and

Using this upper bound in the numerator of (39), we obtain
that for all sufficiently close to one and
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as

where derives from the fact that for all sufficiently
close to one and ,

, which follows from Fact C8, given that
and , as shown by Lemmas

8 and 9 (Part B). is due to having and so
. Finally, is obtained using Lemma 7 (Part C).

This shows (39) and completes the proof of the lemma.

Proof of Lemma 12: We start by recalling from (6) that

where is a Gaussian density whose mean is .
Thus, it is easy to see that for

For tractability, let for all (not just for
). Similarly, for

As before, let for all (not just for
).

Letting for , and zero
for all other ’s, we define

so that . We break in a similar
manner. Specifically

where , and are zero outside their respective regions.
Next, we have

(40)

where the inequality follows from the fact that for those quanti-
zation cells where two of the three functions and are
nonzero (i.e., the quantization cells containing and ),
the right-hand side is larger, as shown by Fact C9. Similarly

(41)

where the inequality follows similarly to (40). Specifically, since
and are nonzero outside the regions and

, respectively, it follows that for all cells there are at least
two functions that are nonzero, and in the cells containing
and , three functions are nonzero. In all cases, Fact C9
implies that the right-hand side is larger.

Clearly, , since the two functions are
equal. We claim that and
that . We will show the first
claim and note that the second claim follows via the same
arguments. By definition . Thus, letting be such
that , and letting , we have
that , for any . For those ’s for which

, Fact C8 implies that .
Since integrates to one (and is nonzero), it follows
that there can be at most two cells for which .
Thus, for all , except for at most two cells, we have

. The contribution to
of those cells for which is upper
bounded by , where .
Lastly, the contribution of cell is upper bounded by .
Consequently, we obtain that .
It follows from the three upper bounds in this paragraph that

(42)

It remains to upper bound . Recalling from (41) that
, we observe that (i)

since and are Gaussian densities with variance
, it follows from Lemma D2 of the Appendix that

and are each upper bounded by ,
where is given in Lemma D2, and (ii) since is nonzero
in at most two cells, . From this and
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(42), it follows that
, for all and .

Proof of Lemma 13: We begin by lower and upper
bounding the expression in the lemma statement as follows:

(43)

It suffices to show that .
To do so, we upper bound the numerator and lower bound the
denominator. Consider the numerator first. For all sufficiently
close to one

(44)

where is due to Lemma 12 with and
defined in Lemma D2, and uses Fact C1.

Next, we lower bound the denominator. Specifically, for all
sufficiently close to one

(45)

where follows from having for all suffi-
ciently close to one and , which imply (using
Fact C8) that ; is
due to Lemma 7 (Part D), and derives from having

, for all sufficiently

close to one, and having .

Finally, plugging the upper bound given by (44) and the lower
bound given by (45) into the last fraction in (43), we obtain that
for all sufficiently close to one

as

where the convergence holds since for all sufficiently close to
one

as

where the term in the numerator replaces

, which tends to at this rate as
as follows from the definition of and Lemma D2. This
concludes the proof of the lemma.

Proof of Lemma 14: It follows from Lemma D1 (Part D)
that it suffices to show

Next, using Lemma D1 (Part B) and Fact C9, we obtain that it
is enough to show

(46)

In order to show (46), we write
, where and

. With this notation,
(46) becomes

(47)

We proceed by upper bounding the numerator in (47). To do
so, we upper bound in terms of and then use Fact C8.
From Lemma 10, we have that for all sufficiently close to one
and
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where the last inequality follows from Lemma 7 (Part C), which
implies that .

Next, we would like to use Fact C8 in order to get an upper
bound for the numerator in (47). We now show that the condi-
tions required by Fact C8 are indeed met. Lemma D1 (Part B)
and Lemma 9 imply that . Therefore, for all
sufficiently close to one and ,

. Consequently, it follows from Fact C8 that
. Combining this with (47),

it follows that it is enough to show

(48)

Finally, (48) can be seen to hold using the fact, shown earlier,
that , together with Lemmas D3 and D1 (Part F).
This concludes the proof of the lemma.

Proof of Lemma 15: It follows from Lemma D1 (Part D)
that it suffices to show

Next, recalling that and
applying Lemma D1 (Part E), it follows that it suffices to show
the following:

A. ;

B.

To show A, we write

Lemmas 7 (Part A), D4, and D1 (Part G) (with )
show that the first term on the right-hand side has equal
one. Therefore, by Lemma D1 (Part C), it suffices to show

(49)

To show this, we observe that by the definitions of and
one can show

We now show that the fraction on the right-hand side above
converges to zero as in the sense, from which (49)
will follow via Lemma D1 (Part B).

Consider first , where is as defined in
Lemma 6. For all sufficiently close to one

as (50)

where is due to Lemma 6 (Part A) and observing that since
the logarithm in the numerator is positive for

all such ’s, is due to upper bounding by , and the
convergence can be easily seen to hold. We also have from
Lemma 6 (Part B), which can be used since , that

. Thus

as (51)

Equations (50) and (51) show

as

(52)

Consider now . For such ’s

can assume only finitely many values. Therefore, it follows that

as (53)

Together, (52) and (53) imply

which completes the proof of (49).
Similarly, to show B, we write
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Lemmas 7 (Part B), 8, D1 (Parts C and G), and D4 show that the
first term on the right-hand side has equal one. Therefore,
by Lemma D1 (Part C), it suffices to show

(54)

From the definitions of and , one can show

We now show that the fraction on the right-hand side above
converges to zero as in the sense, from which (54)
will follow via Lemma D1 (Part B).

On the one hand, we have from Lemma 6 (Part C) that
, for . On the other hand, Lemma 6

(Part D) implies that for

Therefore, it follows that

as (55)

as can be seen from the fact that

as

Since (55) also holds for , it follows that the convergence
holds in the sense. This completes the proof of (54) and
concludes the proof of the lemma.

Proof of Lemma 16: It needs to be shown that

First, we observe that

as

Therefore, it needs to be shown that

Recalling that ,

, and

, the above can straightforwardly
be shown in the following way:

as follows from the fact that as .

VI. CONCLUDING REMARKS

The principal result of the first part of this paper, Theorem
1, shows that the joint entropy of identically scalar quantized
samples of a stationary continuous-time random process, taken
over a finite time interval, converges to infinity as the sampling
rate increases. The only requirement is that the process cross
a quantizer threshold with positive probability. Note that if the
latter does not occur, then the quantizer is essentially useless.

The contrast between the infinite entropy limit and the finite
rate of ideal lossy source coding at the same distortion was de-
scribed. It is interesting to ask how much the considered system
would need to change in order for the entropy in bits/sec to re-
main bounded. For example, suppose that instead of losslessly
coding just the quantized samples in the unit time interval
at rate equal to their joint entropy bits/sec, one
losslessly codes the infinite sequence of quantized samples at
rate bits/sec, which is the sampling rate times the
entropy-rate of the sequence. can be no larger than

, which goes to infinity. But does also
tend to infinity? Though we conjecture that ordinarily it does, a
detailed verification is required.
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Next, suppose that the scalar quantizer is replaced by a -di-
mensional vector quantizer (VQ), for some fixed . Does the
joint entropy of the quantized samples in the unit time interval
again increase to infinity? Informal arguments, somewhat like
those in Section II, suggest that it does. This would lead one to
believe that to attain a bounded rate (in bits/sec), the dimension
of the VQ should increase as the sampling rate increases.

The dithered scalar quantization schemes considered in [7],
[8], and [10] use periodic dither with a period (in samples) that
increases to infinity as the sampling rate increases. In effect,
these are VQs with dimension increasing to infinity. Arguments
like those in Section II suggest that the entropy of the quantized
samples in the unit time interval again goes to infinity. Now,
though, distortion goes to zero. However, when the target dis-
tortion is fixed, it is not known if dithered scalar quantization
has entropy in bits/sec remaining finite or increasing to infinity
as the sampling rate increases.

For the motivating sensor network scenario, in which the sam-
ples are separated by space rather than time and for which dis-
tributed coding is required, it is interesting to ask whether al-
lowing ideal distributed lossy coding (rather than scalar quan-
tization) at some fixed target MSE would again have rate in
bits/sec tending to infinity. For the important case that the under-
lying random process is Gaussian, this question was answered
by Kashyap et al. [26], who found a finite upper bound to the
rates attainable by distributed lossy coding over the unit space
interval as sampling rate increases. This shows that at high sam-
pling rates, ideal distributed lossy coding overcomes the prin-
cipal shortcoming of scalar quantization. When coding is not
restricted to a fixed finite space interval, a tighter upper bound
was found in [27].

To gain some understanding of the rate at which joint entropy
approaches infinity, Theorem 3 of the second part of this paper
finds the asymptotic form of the conditional entropy ,
for a Gaussian process and a uniform threshold quantizer. As
expressed in (1), this factors into one term that depends on the
sampling rate and the behavior of the autocorrelation func-
tion near the origin, and a second term that depends on the ratio
of the quantizer step size to the process variance and (typically
just a little) on the location of the mean of the process within
the quantization cell that contains it. For large , is
essentially an upper bound to . Theorem 4 also
found the asymptotic form of for a situation in which
the quantizer cells shrink as . It would be interesting to
have a complementary expression that applies in the case of ex-
panding quantizer cells. For example, one would like to know
how fast the cells would need to expand as in order
that the limiting joint entropy be finite. Another
interesting problem is to find a similar formula to that of The-
orem 3 when conditioning on more than one quantized sample.

APPENDIX A

The discussion below appears in more detail in [28
(pp. 41–45)] and in [29 (pp. 86–92)]. A random process

, abbreviated , defined on a proba-
bility space is said to be separable if there exists a

countable set and a fixed null event such that for any
closed set and any open interval , the two sets

and
differ by a subset of . The countable set is called a sepa-
rating set or separant.

It follows from the definition of separability that when the
underlying probability space is complete, for any the
set is an event with the same
probability as the event , where
is a separating set.

The process is continuous in probability, if for any ,
as . If is both separable

and continuous in probability, then every countable dense subset
of is a separating set. Thus, when is also stationary (i.e.,
for any , , and such that

, has the same probability
distribution as ), the two events

and have
the same probability since one can find a countable set, which
is dense in and is a separating set, and use it to compute
the probability of both events (since the shifted set is also a
separating set). Therefore, stationarity along with separability
and continuity in probability imply that shifting events of the
above form does not alter their probabilities.

Next, a random process is said to be measurable if
is a function measurable with respect to , where
is the -algebra of Lebesgue measurable sets in , and is
the -algebra generated by all sets of the form , ,

, i.e., for any ,
.

Let be an indicator function, which is one if some spec-
ified event occurs in at time and zero otherwise. Let be
some Lebesgue measurable set, for example, an interval. If is
a measurable function with respect to , then it follows from
Fubini’s theorem that . Thus, the
measurability of the process ensures the correctness of swap-
ping integration and expectation above.

Finally, if the process is continuous in probability, and
is an interval, then there exists a process defined on the same
probability space, which is separable, measurable, and equiva-
lent to in the sense that , for all ,
which implies that and have the same probability distribu-
tion for any finite collection of random variables. This implies
that continuity in probability suffices to guarantee that basic op-
erations on stationary continuous-time random processes such
as preservation of probability under shifting and exchange of in-
tegration and expectation can be performed.

APPENDIX B

We show in this appendix that where

We first observe that can
be rewritten as
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Next

Similarly

Since and , it follows

that . Similarly, the same limit

applies for , as needed to show.

APPENDIX C

The following are elementary facts about the , and
functions, where we recall that and

, .

Fact C1: , for .

Fact C2: , for .

Fact C3: , for .

Fact C4: , for
and .

Fact C5: , when and .
Fact C6: and is a strictly

decreasing function of , for .
Fact C7: is concave and attains its maximum at

.
Fact C8: implies , and

implies .
Fact C9: For any , .

Facts C1, C2, and C3 are shown in [24 (pp. 82–83)]. Facts
C4 and C5 can be shown straightforwardly using Facts C2 and
C3. The first two parts of Fact C6 are immediate, and the mono-
tonicity part follows from having for all , which
can be shown using Fact C2. Fact C7 is well-known. Fact C8 is
a direct consequence of Fact C7, and Fact C9 is due to the con-
cavity of .

APPENDIX D

We recall first that means
that . Equiv-

alently, we may write
.

Lemma D1: For any nonnegative choice of
A. (Dominated Convergence Theorem)

If a.e., for some inte-
grable function and exists a.e., then

.

B. If and exist, then

.

C. Let and be nonnegative for all and
. If and exist, then

.

D. Let be positive for all and . If

, then .

E. Let and be positive for all and
. If and , then

.

F. If and , then
.

G. If and , then
.

Proof: We show the statements of the lemma in the
following order: G, F, C, B, D, E, and A. Consider Part
G. Let be given. Then by assumption there exists

such that if , then .
Similarly, by assumption, there exists such that for
all , . Combining
the last two statements it follows that for all ,

. Since is arbi-
trary, the result follows.

Part F is a special case of Part G with, for example, ,
, and for all and for

.
Next, we show Part C. Let and

. Then

and

where the equalities in the two equations above follow
from the definition of . Combining the two equations
above and using the definition of , we obtain that
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, which is what was needed to be
shown. Part B can be shown in a similar way.

We proceed with Part D. Since , it follows
that for any , there exists such that for all

for all . Consequently, for all such

Since is arbitrary, the result follows. Part E can be shown in a
similar way.

Finally, we show Part A as follows:

(D1)

where follows from having

and having exist a.e. (due
to the fact that if exists, it equals

), and applying the domi-
nated convergence theorem6 [30 (p. 209)], and is due to the
just mentioned fact that if exists, it equals

. In a similar way, we also have

(D2)

where follows from having

6It is easily shown that the theorem applies when the integrand is parameter-
ized by some � converging continuously to some � , rather than some integer �
converging to�.

and having exist a.e. (due
to the fact that if exists, it equals

), and applying the dom-
inated convergence theorem, and is due to the just
mentioned fact that if exists, it equals

. Combining (D1) and (D2)
concludes the proof of Part A and of the lemma.

Lemma D2: Let be a Gaussian random variable with
variance and any mean, quantized by quantizer with step
size . Then

where if , or

otherwise, and . It follows that if tends to zero, then

Proof: Let the mean of be contained in cell zero, and let
denote the pdf of . We write as follows:

where and are zero outside of their respec-
tive regions. We now have

(D3)

where the inequality follows by upper bounding by
.

Next, we upper bound . For

It is not hard to see that for all , where
is given in the Lemma statement. Thus, using Fact C8, we have
that , for all . It now follows that
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(D4)

where the last inequality follows since and
. We now consider the last two summations in the last equation.

The first summation of the two is upper bounded as follows:

(D5)

Next, we upper bound the second summation as follows:

(D6)

where uses the fact that , follows since the
integrand is monotonically decreasing for , and by inte-

grating over a larger interval than , and is derived
using simple algebra. It follows from (D4), (D5), and (D6) that

The lemma now follows from (D3), the last equation, and
the fact that the above upper bound can be shown to hold for

as well.

Lemma D3: Let be given. Then

This is similar to Lemma 2 of [25].
Proof: We need to show that

. The following string of equalities proves the lemma:

as

where we used the well-known fact that .

Lemma D4: Let and be positive functions on
such that and . Then

This is a slightly weaker version of Lemma 4 of [25].
Proof: To keep notation short, we omit the parameter

from and . The following string of equalities proves
the lemma:
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